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("“)Considerag system of ordinary differential equations of the form

(24
S

| -—

(M 51 s g + Vy(t,q) = £(¢)
where £ and‘:V are periodic in t, V 1is periodic in the/components of
q= (q;,...,qg), and the mean value of £ vanishes. By/showing that a
corresponding functional is invariant under a natural acticn, a simple
variational argument yields at least n + 1 distinct periodic solutions of

{*). More general versions of (*) are also treated as is a class of Neumann

problems for semilinear elliptic partial differential equations. (?_~_,/

AMS (MOS) Subject Classifications: 34c25, 35360, 58E05, 58r05, 58F22

Key Words: 2" action periodic solution, critical point, minimax argument,
Ljusternik-Schnirelmann category, Neumann problem
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ON A CLASS OF FUNCTIONALS INVARIANT UNDER A Z"  ACTION

Paul H. Rabinowitz.

Introduction

Consider the system of ofdinary differential equations
(0.1) g+ v&(t:Q) = f(t)
where q = (qqs+-+,q ) € R and V satisfies
(V1) V e C‘(R x RN,R) and is T periodic in t and Ti periodic in Qv
1<1i<n.
Suppose further that f satisfies

(£4) £ ¢ C(R,R") and is T periodic in t

T
[ flvyat =o0.
0

i

(£,) [f] =

Note that if q(t) is a solution of (0.1), so is q(t) + (kT,,...,k T ) for
all k = (k1,...,kn) € 2®. It was shown by Mawhin and Willem [1], Serrin and
Pucci [2-3], Li (4], and Franks (5] that if n =1 and V is independent

of t, (0.1) possesses at least two T periodic solutions which do not
differ by a multiple of T4. 1In [5], the proof relies on a generalized
version of the Poincaré-Birkhoff Theorem while [1~4) use variational
arguments. Part of the difficulty in treating (0.1) in [1-4] is caused by the

fact that the corresponding functional:

-
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(0.2) Q) = [
- 0

1412 - vit,q@) + £ « qlae

XY N

defined on the natural Sobolev space associated with (0.2) does not satisfy
the Palais-Smale condition, a compactness criterion very useful for
variational p?oblems and henceforth denoted by (PS).

The purpose of this note is to show that in fact if appropriately
interpreted, the variational problem does satisfy the (PS) condition. The
simple observation that makes this statement precise together with standard
techniques leads to a generalization of the above results:

Theorem 0.3: Under the above hypotheses on V and f, (0.1) possesses at
leagt n + 1 "distinct" solutions.

What is meant by distinct will be explained in §1. Theorem 0.3 will be
obtained from a more general result involving a Lagrangian of the form

L(qrd) = 3 L6, @) « § - V(t,q) + £(8) + q
where L(t,q) is a symmetric positive definite matrix possessing the same
periodicity properties as does V. Actually as will be shown in §1, when L
is independent of t and q and £ = 0, ¢this more general result can be
obtained from a theorem of Conley and Zehnder [6, Theorem 3]. They were
mainly interested in the much more difficult case of indefinite L.

In §1, the generalizations of Theorem 0.3 will be carried out. Some of
the technical details will be given in §2. The ideas used in §1 and 2 can
also be applied to a class of Neumann problems for semilinear elliptic partial

differential equations. Consider -

(0.4) -Au = p(x,u) + h{x), xX e,

u o, x € 3 .

v
Here Q denotes a bounded domain in R with a smooth boundary and outward
pointing normal v(x) and %%-- v{x) * Yu. Suppose p(x,f) = %%(x,i) and

|ﬂ| denotes the volume of . Then we have
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Theorem 0.5: Suppo‘se P satisfies s
- ; - ’
(Pq) Pe¢ c2(5-2 x BR,R) and P(x,f +r) = P(x,E) for all (x,£) ¢ 5 x R :
and h satisfies v
(hy) heclio,m, :
and b 5
(hy) ,[h] = T%T-é h(x)dx = 0. ;
M

Then (0.4) possesses at least two classical solutions which do not differ by a j
multiple of r. !
g

The proof of Theorem 0.5 will be carried out in §3. We thank Ed Fadell j:

and Sufian Husseini for helpful conversations. :.
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§1. A generalized version of Theorem 0.3 c:::
: ' L
t
Let E = w.}.’z(R,R“) denote the Sobolev space of T periodic functions ' ,,‘:
with values in R under the nom W
N
T 1 i
g1 = (f |&)2%ac + 1) 1/2 by
0 N
9
Suppose L satisfies ..::
2 . .'l‘
(L;) Lec'(Rx RR") is a symmetric matrix with L(t,q) being T ]
2]
periodic in t arnd Ti periodic in qy s 1<ic<n ‘
a o,
an "
¢
(Lz) there is an a > 0 such that L(t,q)E « E > alglz for all t ¢ R and :::
“ .
I
q9.8 € R B
3
Suppose V and f satisfy (V4) and (f4)~(f;) respectively. Let q ¢ E. 'i,
Then j .
T 1 . .i
(1. 1) IM)EI[3MLQQ-4-V&&)+foﬂu “,
o )

R

-
-

is well defined and the argument of (7, Prop. B10] shows that I ¢ C(E,R)

' i
and critical points of 1 are classical solutions cf '%
d o 1 3L W)

. -_— - . +V - . ;
(1.2) ac (@) - 50 (t,q)d * § + Vo(t,q) = £(¢) &§
Suppose Q,q ¢ E and :Q'.‘r
‘_Qb\

(1.3) Q - q = (k1T" ooo,kr;rn)

where k = (kq4,...,k;) € 2Z". The properties of L, V, and f then imply

ST

(1.4) I1(Q) = I(q) . het
]
A functional J on E satisfies (PS) if any sequence qQ such that I(qm) g
is bounded and I'(q,) + 0 possesses a convergent subsequence. Equation -{fn g
l* *
I' N
(1.4) shows that I does not satisfy (PS) on E. However, (1.4) implies I :&
!
Lo

possesses a free 2" action on E and this will provide the topological

P LN Y
'y KaSn¥)
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basis for an existepce result for (1.2). Before stating it some further
preliminaries are required.

We introduce an equivalence relation ~ on E via Q~q if (1.3)
holds for some k ¢ Z". let E = E/~ with the corresponding quotient
topology. One could now consider I on E. However, we find it more
convenient technically to work on E itself and proceed as follows. For
k ¢ 8", set 6, = (kyTq,+..,k;T). For q ¢ K', let g (q) = q + 6x. Then

G

(gklk ¢ Z"} is a group of mappings of E onto E and I is invariant
under G, i.e. 1I(g(g)) = I(q) for all gqeE and ge¢ G. A set ACE is
called invariant (with respect to G) if g(A) CA for all ge¢ G. A is an

invariant set if and only if there is a set ECE such that A/~ = R.

With the aid of the above notions, a generalized version of Theorem 0.3
can be stated.
Theorem 1.5: Let V satisfy (V4), £ - satisfy (£4)-(f3) and L satisfy
(Ly)-(L3). Then equation (1.2) at least n + 1 distinct solutions

Q1""'Qh+1' i.e- fO!‘ i # j' Qi # g(Qj) fOt all g € Go

These solutions will be determined as critical points of I by means of
a minimax argument. To characterize the corresponding critical values of I,
let A CE be closed and define

(1.6) Iy ={aC E|A is invariant and cat~x > k} .
E

In (1.6), catyY dJdenotes the Ljusternik-Schnirelmann category of the closed
set Y in the topological space X. (See e.g. [8].)
Lemma 1.7: T ¥ ¢4, 1 <k <n+ 1.

Proof: It suffices to show T, 4 ¥ #. Let A = "q Elq = [q]}. Then A |is

isomorphic to R® and A/~ to TP. Therefore E/~ =T' @ F where F = Al,
the orthogonal complement of A. Since F is a linear space, it is

contractible to a point in itself. Therefore by standard results on
-5-
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Ljusternik~Schnirelmann category - see p. 459-460 of (9]

(1.8) catNE = cat~Tn ® (0} = cat ™ =n+ 1.
E E ™

Now n + 1 critical values cx ©of I can be defined as
(1.9) ¢y = inf max I(q), 1<k<n+ 1.
Bfrk qeB
To prove Theorem 1.5, it will be shown that each of the numbers C is a
critical value of I and there are at least n + 1 corresponding critical

points. To carry out the proof some further preliminaries are required. A

mapping ¥ : E + E 1is called equivariant with respect to G if
Yog=g oVY forall ge(G. For s € R, let Ag = {g € E[I(q) < 8} and

K, = {q ¢ EII(q) =3 and I'(gq) = 0}. The following version of a standard

"Deformation Theorem” is needed:

Proposition 1.10: For any c ¢ R and invariant neighborhoocd (0 of Ko

there is an ¢ > 0 and n ¢ C({0,1] x E,E) such that
1° n(0,q) =q for all q ¢ E

2° n(t,q) 1is equivariant for each t ¢ [0,1]

3° nla,Ag, \O) C A,
o
The proof of Proposition 1.10 will be given in §2.

Completion of proof of Theorem 1.5: By 1° and 2° of Proposition 1.10,

n(1,) 1is homotopic to the identity map and is equivariant. Hence by Lemma

5.3 of [B), n{(1,e) : Ty + Ty 1<k <n + 1. Now the conclusions of Theorem

1.5 follow in a standard way: suppose Cy = ese = Cyyp I Co Then

(1.11) cat K_>p + 1
Ec

for if not, by the proof of Proposition 1.10 and Lemma 5.6 of [8], we can find

' -
a uniform neighborhood (¢ of X_ such that catE.O < p + 1. Choose

c
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B¢ Pk+p such that

——— e g o - e

(1.12) mgx I1<c+e.

L By the subadditivity property of category - (8, Lemma 5.3], cat~§\5 >k +p -
n E

» P=k so B\ el as is n(1,B\0)

, .\ ,

——mre e aeb e

By. But by (1.12) and 3° (or if

p =0, 4°) of Proposition 1.10,
(1.13) max I < ¢c-¢,
B4
contrary to the definition of ¢ = Cp+ Finally, if p > 1, the definition of
category implies Ec contains infinitely many distinct points completing the

proof.

Remark 1.14: 1In [4], Li proved an abstract theorem about critical points of
periodic functionals which the above arguments can be used to generalize and

put in a more natural form.

Remark 1.15: If e.g. L and V are independent of t and £ = 0, the
hypotheses and therefore conclusions of Theorem 1.5 hold for all T ¢ R.
However, by the periodicity properties of V, it belongs to C‘(Tn,R).
Therefore V possesses at least catTnTn =n + 1 distinct critical points
which will be equilibrium solutions of (1.2). Thus it is not clear that there
need exist any time dependent solutions for this special case without more
structure for V. In this regard, see Theorem 5.2 of (4] when L = id and
n=1,
Remark 1.16: 1In [6], Conley and Zehnder proved that if (i) H(t,p.,q) ¢ CZ(R x
R® x R',R) where H is 1-periodic in t and the components of q, and (ii)
there is an R > 0 such that for |p| » R,

H(t,p,q) = %-Mp spta-p
where a ¢ R and M is a symmetric nonsingular time independent matrix,

then the corresponding Hamiltonian system possesses at least n + 1 distinct
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periqdic solutions. This theorem applies to a subclass of the problems
treated here including Theorem 0.3. Note however, that the Conley-Zehnder
result permits indefinite matrices M. Assuming for the moment its
app;icability “ere to Hamiltonians of the form

(1.17) H=2Mp+p+ Vit ,

observe that the corresponding Hamiltonian system is

(1.18) P = Vg g =Mp .
Therefore
(1.19) P AT M~ 4 Vq .

Choosing M = =1, (1.19) now gives (1.2).

To applicability of the Conley-Zehnder result is not quite immediate here
since (1.17) does not satisfy condition (ii). However, using a trick, a
modified Hamiltonian can be constructed which satisfies (ii) and whose
solutions satisfy (1.2). For simplicity we will just verify this for (0.3)
where M = id. For this case by (1.2) or (0.1), if q is a T periodic
solution,

(1.20) Iq.x.” < max lvq(t,g)l = Ky < Ky + max |v(t,£)] = K.
teR,EcR" teR,EeR®
Simple estimates then show
(1.21) 191 _ < Tigl _ < 2TK .
L L
Let ¢ ¢ C”(R,R) such that ¢(s) = 1 if 8 ¢ (1 + T)K = K,, ¢(8) = 0 if
8 > 2X,, and -1 < ¢'(s8) < 0 if 8 € (Ky,2K;). The Hamiltonian
» ’ 2
(1.22) B(t,p,q) = 5 |p|2 + otlpDivit, )

satisfies (i) and (ii). The corresponding Hamiltonian system is

3 N o - °
(1.23) P = Voor q=P*+ Ve

If (p,q) is a T-periodic solution of (1.23), the second equation implies

-
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-
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(1.24) _ {p] = —[V¢pl .

By the definition of K,, |¢pl < 1 and therefore

(1.25) lip1] < k.
Since
A
(1.26) plt) = [p) + 5 [ (f B(s)as)dr,
0 T

(1.26), (1.23), and (1.25) imply

(1.27) IpILw< K+ TK< K, .

Consequently w(lpl) =1, wp(lp]) = 0, and any T-periodic solution of the

modified equation satisfies (0.3).

A

B ..'_."_;'f.a.'_.’
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§2. The proof of Proposition 1.10

A mapping n ¢ C([0,1] x E,E) and ¢ > 0 must be found satisfying 1°-4°
of Proposition 1.10. Much of this construction is standard and therefore we
will only indicate the modifications that must be made in the proof the "usual
case” that can he found in [7,'Appendix a}.

The mapping n is determined as the solution of an ordinary differential
equation of the form
(2.1) 2 = wn¥(n)
where w 1is a cut-off function with 0 < w < 1 and ¥ is a pseudogradient
vector field for I'. 1In [7)], the choice of ¢ and construction of
depend on the fact that I satisfies (PS). As was already noted, this is not
the case here. Therefore we must show that because of the invariance of I
under G, the proof works nevertheless. Heuristically, we will show that

II~ satisfies (PS). First the form of I' must be studied. Let D denote
E

the duality map from E to B*-

Proposition 2.2: Under the hypotheses of Theorem 1.5,

I'(q) = D(Py(q) + P(q))
where P 1is compact and

d . o
T Pi(q) = L(t,q)q - [L(t,q)q] .

Proof: By (1-1)1

T n
L] L 1 o
(2.3)  I(@9=[ [l@aeo+3 ] L, q+doy -V, + o+ £+ gldt.
0 i=1 1
Let
r T
I, (@)e =] 14 « pat
0
; T on
(2.4) 4 Ith)¢=-2-j ! L, 4 ¢;at
0 i=1 1
T
I,(q)e = (f) (-vq + f) o pdt .

A

‘R_= —
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TR

By the argument of Proposition B.10 of (7], I3(q) = DP3(q) where P3 is

compact. Next consider Iz(q)p. It has the form 3

T v
(2.5) . . I,(qlg = [ b« gdt
.. 0

b o - -

where b = b(t,q,qd) € 1. Ssince I,(q) € E', there is a unique

x=f+y e RR®F such that )

-
=

)
) T )
i (2.6) (e = J ¥« pat + £ « (o] . )
- 0 W
%
b, Comparing (2.5)=(2.6) shows y is a weak solution of o
) ¢
I 3
X (2.7) -¢ =b - [b] . ,
1

o

2,1

Hence y e¢ W™’ and

(2.8)

Similarly £ = T[b]

(2.9) le] < Tibe

£y

p Let Pz(q) = y(q) + E(q). The form of b shows that for q belonging to a

2,1,

bounded set in E, P,(q) will be bounded in W Hence P,(q) and

o P £

I,(q) = DP, are compact on E.

X Finally, consider I4(g)p. As was the case with I5(q),

Pl g s

T
: (2.10) I,(q)g = [ @ . gat
0

where w ¢ F and there is no mean value term due to the form of I1(q). :}

Comparing with (2.4) yields
(2.11) w14 - (q) . :

Now (2.11) together with [w] = 0 determines w = P4(q). Setting N

P= P1 + P,, the result follows.

-~

Lemma 2.12: Let K = {qg ¢ K.[0 < (qy] < Ty, 1 €1 < n}. Then K, is “

compact.

'y -« e W W W L 4 L v " " G O -
R R R B B AN A Iy o s T e S A
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Proof: Suppose (Qm) - Kb. Let Q) =&, + Y, where £, ¢ R" and Y, ¢ F.

The form of I and (L,) imply that (Y;) is bounded and the definition of

-~

Ré shows that (£;) is bounded. Since (Qm) is bounded, along a
subsequence, Jn converges weakly in E and strongly in L to Q@ arnd
P(Qm) converges in E. Therefore from Proposition 2.2,

-1 -1 T . d
(2.13) Qp = L™ (t,Qp) (T {J L(t,Q )Q dt - == P(Q)] .
Now equation (2.13) shows that along this subsequence 6m converges in L2

and Q, converges in E and 1'(Q) = 0. Hence Q ¢ Kc.

Completion of the proof of Proposition 1.10: 1In the proof of the version of

Proposition 1.10 given in [7), (PS) is used in two places. The first is in
showing that K. is compact and therefore for any neighborhood 0 of K.,
there exists a uniform neighborhood Ng = Ng(K.) = {q € E|Iq - Kcl < 8} C 0.

For the current setting, if (0 1is an invariant neighborhood of L since

RE C K, and is compact, there is a2 § > 0 such that 0> NG(Kc)° Therefore

by the invariance of 0,

(2.14) 0> U g(N(K)) = Ng(K;) .
geG

The second place at which (PS) is required in [7]) is in showing that
there exists constants b, > 0 such that if ge¢ Az A \(A U N5 /g)s
c+te  c-¢
(2.15) 1II'{(q)1 > b .
Arquing indirectly, (2.15) follows for the subclass of q ¢ A such that

0« [qi] <Ty, 1<i<n byan argument paralleling the proof of Lemma 2.12

which will be omitted. Since A5 and N, are invariant sets, (2.15) then

holds for all q ¢ A.
Given (2.14)-(2.15), the argument of Theorem A.4 of [7) yields 1°, 3°-4°
of Proposition 1.10. It remains only to show that by an appropriate

construction of n(t,-), 2° also holds. Since I is invariant under G,

CAA Py -

L I X

LA » < ; ( apw,w » Pl 3 .- - ey Tt - » .
' lh‘:"».l,‘ﬁi."i or, 41, Py lul..' "q"lc .h‘!'u MIUOUCEMM XN ‘:N 2 O - NN “ [ & .'J'\-“ '.5 5 v M . 'V -'-"".' . e ‘. NN ? \ T
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i.e.' I(gy) = I(q + 8y) = I(q) for all gy € G :‘g‘
(2.16) I'(q +8,) = I'lq) = I'(g,q) %
for all 9 € G. The invariance of I' under (G allows us to slightly ‘
h

modj.fy the construction of Lemma A.2 of [7] to obtain a pseudogradiant vector Eﬁ:
field ¥ for I' which is also invariant under G. Also the definition of :',‘:’
w in (7] shows that if I 4is invariant under G, so is w. Thus the right-
"2,

hand side of (2.1) is invariant under G. We claim n(t,+) satisfies 2°, “
i.e. n(t,gq) = gn(t,q) for all t e (0,11, g € G, g € E. Indeed set
w = gn(t,q). Then w = n(t,q) + 8, for some k ¢ 2" and ‘:
Q280 o yn)¥(n) = wlgn)¥(gn) = w(w)¥(w) i

(2.17) dat dt ;::
w(0,q) = gq . . ‘u:

Therefore w(t,q) = n(t,gq) = gn(t,q) so 2° holds. The proof is complete. :::
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§3. The Neumann Problem

In this section, the Neumann problem

-Au = p(x,u) + h(x), x € Q

- -
fPodied

(3.1)

u'O, xeaﬂ

N e
o . s
"

will be studied and Theorem 0.5 will be proved. The ideas used here are so

close to those of §1-2 that we will be sketchy.

B
XA -’

let E = W1'2(Q). For u ¢ E, define

.’-"

(3.2) I(w) = [ [3 |va]2 - Bx,u) - hx)ulax
Q

where P, h, Q@ satisfy the hypotheses of Theorem 0.5. The proof of
Proposition B.10 of [7] shows I ¢ c'(E,R). By e.g. [10, Chapter 2] critical
points of I are classical solutions of (3.1). Note that I(u + kr) = I(u)
for all ue¢E and k ¢ 2 via (pq) and (hp). Therefore I does not satisfy
(PS) on E. For u,v ¢ E, we say u 1is equivalent to v, u ~ v, if
W-v =kr for some k ¢ Z. lLet E =>E/~. As in §1, A C E is an invariant
set if and only if there is an XACE such that X = a/~. Again E can be
identified with R ® F where F is the orthogonal complement of span {1}
in E and E can be identified with sler.
The argument of Lemma 1.7 shows that
Iy ={ACE|cat K > x} # &
E
for k = 1,2. Noting that ([ |tu]2ax)1/2 ig a norm on F and that
Q

(3.3) I'(u) = D(u = [u]) + P(u)
where D again denotes the duality.map and P 1is compact (see Proposition
B.10 of [7]). Therefore there is an analogue of Proposition 1.10 here which
implies that

(3.4) cx = inf max I(u), k= 1,2
' AeT, u A

14~
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ﬁ is a critical value of I, k = 1,2 with a multiplicity result if Cqy = Cy+

- .

%% ' This completes the proof of Theorem 0.5.

1& Remark 3.5: If in (0.6), u is an n vector, p(x,u) = VuP(x,u), and P

ES is periodic ir the components of u, a version of Theorem 0.5 analogous to

:a Theorem 0.3 obtains.

E: Remark 3.6: An alternate way to prove Theorem 0.5 is to obtain a first

%; solution as a minimum and a second using a variant of the Mountain Pass :
O

:b Theorem as in [1]-{4] for (0.1) with n = 1. Such an approach, however, does
?; not extend to cover the vector case mentioned in Remark 3.5.

ﬁ Remark 3.7: Theorem 0.5 can also be extended by replacing =-A by a more

is general second order divergence structure uniformly elliptic operator with

?; appropriate changes in the boundary conditions. A similar result also obtains
g if Q 41is replaced by a rectangular dqomain and the Neumann boundary conditions
&

" by periodic ones.
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